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Summary. Selection indices that maximize the correla- 
tion between an individual organism's index score and its 
breeding value frequently require a priori known "eco- 
nomic" weights before the optimum phenotypic weights 
can be estimated. The long generation intervals and eco- 
nomic uncertainty that surround forest tree breeding can 
make the choice of weights arbitrary. In this paper an 
algorithm is introduced for finding "economic" weights 
that will ensure maximum simultaneous progress in all 
index traits. At the outset the traits are assumed to be of 
equal preference. The solutions are functions of the eigen- 
values and eigenvectors of a quadratic form of the addi- 
tive genetic and phenotypic covariance matrices. Exam- 
ples of applications in tree breeding emphasize the 
practical aspects of the method. 
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Introduction 

Selection index theory was originally formulated on a 
profit function, defined as a linear function of traits 
(Hazel 1943; Lush 1947; Osborne 1957; Smith 1936). 
Essentially, the index is a linear weighted function of 
observations on an individual or its relatives that aims at 
ranking the population for breeding values and, thus, 
expected progeny performance (Falconer 1981; Kemp- 
thorne 1957; Lin 1978). Index weights can be found by 
maximizing the product-moment correlation between in- 
dex values and the aggregate genotype (see Baker 1986 
and Lin 1978 for references). Selection indices have been 
used effectively in both animal and plant breeding pro- 
grams as a superior alternative to other alternative selec- 

tion methods (Cotterill 1985; Hazel and Lush ~942; 
Turner and Young 1969). Moreover, selection indices may 
assist the breeder in a structural interpretation of com- 
plex multidimensional genetic parameters. 

Numerous properties and aspects of selection indices 
have been investigated, and the main body of theory as 
applied to animal and plant breeding is well understood. 
Examples hereof are: restricted selection indices (Cun- 
ningham et al. 1970; Harville 1975; Itoh and Yamada 
1988 a; Kempthorne and Nordskog 1959; Tai 1977; Tallis 
1962), non-linear utility functions (Itoh and Yamada 
1988b; Mather et al. 1988; Tallis 1968), accuracy and 
errors (Harris 1964; Hayes and Hill 1980; Hill 1984; Sales 
and Hill 1976; Smith and Pfaffenberger 1970), and indi- 
rect selection (Binet 1965; Griffing 1969). 

Many selection indices require knowledge of (i) fixed 
effects, (ii) variance and covariances (phenotypic and ge- 
netic), and (iii) a set of relative "economic" "values of 
component traits. The "economic" values may reflect the 
market situation, preferences, retrospective results, or 
simply arbitrarily fixed values. However, the assignment 
of these weights is frequently a difficult task when the 
breeder is faced with long generation intervals and poorly 
quantifiable "economic" merits of the traits (Bridgwater 
et al. 1983; Itoh and Yamada 1988a; King et al. 1988), 
Ideally, an economic weight of a single trait should reflect 
the marginal benefit from a one unit improvement 
(Muller and Zeddies 1988); a complete cost benefit anal- 
ysis may be needed to provide the appropriate figures 
(Bridgwater and Stonecypher 1979; Chollet and Roman- 
Amat 1987). Simpler indices, like the desired gains index 
and the weight-free index, permit avoidance of determin- 
ing economic weights (Baker 1986). 

This study provides an algorithm for obtaining the 
relative "economic" weights when the purpose of selec- 
tion is to maximize the genetic merits of a composite 
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geno type  s imul taneously .  U n d e r  these par t icu la r  c i rcum- 

stances (i.e., the trai t  preferences are assumed,  concep tu-  

ally and implicit ly,  to be equal  at the outset),  the  o p t i m u m  

rela t ive  " e c o n o m i c  weights"  are par t  of  the so lu t ion  to the 

indexing  problem.  Appl ica t ions  of  the a lgo r i thm are illus- 

t ra ted  wi th  examples  f rom forest  tree breeding  where  the 

s imul taneous  i m p r o v e m e n t  of m a n y  traits is a c o m m o n  

objective.  

The  m o d e l  

In constructing the index (I) for n traits, a linear function of an 
individual's phenotypic value x~ is weighted by coefficients (bi) 
designed to maximize the correlation between the function and 
the individual's genetic worth (H), where H is a linear function 
of the breeding values of each trait (g~) weighted by the economic 
importance attributed to each character (ai). In its most general 
form, the unrestricted selection index is: 

I = b ' . X  (t) 

where 

X is an n x I vector ofphenotypic deviates from fixed constants 
that are assumed to be known, 

b is an n x t vector of weighting factors (' denotes a transposed 
vector). 

The overall economically weighted breeding value is given by: 

H = a'. g (2) 

where 

a is an m x 1 vector of relative economic weights, 
g is an m x 1 vector of unobservable breeding values. 

Weights for the optimum index are given by: 

b = P - 1 . G . a  (3) 

where P is the n x n phenotypic variance-covariance matrix of 
the phenotypic observations and G is the n x m matrix of covari- 
ances between elements of X and those of g, i.e.: 

Var ( ~ ) =  (G GG). (4) 

The covariances in G are assumed to be entirely genetic 
(additive) in origin. Further, we assume that matrices P and G 
are known and not changed by selection. In practice, sample 
estimates/3 and G are substituted for the theoretical values [this 
causes a loss of optimum statistical properties (Hayes and Hill 
1980; Sales and Hill 1976)]. When the correlation between I and 
H is maximized, the expected genetic gain (response) due to 
selection and breeding is: 

R' (i) = Coy (I, H)/~r~ (5) 

where R'(i) denotes the response vector per unit selection inten- 
sity (i), and ~r~ the standard deviation of the selection index 
(~f = b'" P" b). 

Substitution of the expression for b in Eq. (3) into Eq. (5) and 
rewriting cr z yields: 

R' ( i )=a"G" P - I G ' ( a " G "  P ~ ' P ' P - ~ ' G ' a )  -~/2 (6) 

or equivalently 

R'( i )=a' .Q.(a ' .Q.a)  1/z for Q = G . P  I .G.  

The matrix Q is a projection matrix of the "economic" vec- 
tor a, whereas the quadratic form a'. Q. a is a measure of dis- 
tance. In other words R (/) expresses the relative response (loca- 
tion/distance). Our task is now to maximize R (i) for any given Q. 
This task is considerably easier if (2 can be brought to a diagonal 
form via some linear transformation. 

Let U be such a transformation that satisfies U-D.  U' = Q, 
where D is a diagonal matrix with r nonzero diagonal elements. 
By further requiring that the transformation U is orthonormal, 
i.e., U. U '=I ( I  is the identity matrix), we achieve the canonical 
form under orthogonal similarity, i.e., D contains the eigenvalues 
2~ of Q (Searle 1982). For P, a positive definite matrix, and G, 
positive semidefinite, the existence of U has been given by, e.g., 
Hayes and Hill (1980) and Searle (1982). 

Post-multiplying Eq. (6) with U produces: 

R'(i). U=a' .  U.D.  U'. U .(a'. U.D.  U'-a) -~ (7) 

define R U' (i)= R' (i). U, and a'. U =au' then we obtain: 

R U'(i)=au'. D.(au'. D.au) -1/z 

or equivalently: 

R u'(0 # 

where 2 stands for the vector of eigenvalues, # denotes the 
Hadamard product, and the subscripts refer to traits in the 
index I. 

The relative economic weights that can be expected to pro- 
duce the maximum simultaneous response R U in the trans- 
formed space can be found by setting the first derivatives of 
Eq. (7) with respect to au~ to zero, i.e., for clarity, reference to 
selection intensity i has been dropped: 

")~i (Y~ a uZ" 2j) 1/2 -- a u 2" 22.(Y" a u2. ).S)-1/2 
ORU' , j  - i  

- = 0  (8) 

multiplying both sides with ( ~  au~.2s)3/z yields: 
\ j  

the term Z au~'2s is common to all derivatives of R U with 
J 

respect to au and can, therefore, be considered as a constant C 
(only relative weights are of interest), i.e.: 

2 i �9 C - a u 2. 2~ = 0 which, when solved for a u i, leads to: 

aui= +_(C/,~31/z. 

Hence, in the transformed space U, choosing relative "eco- 
nomic" weights proportional to the inverse square root of the 
corresponding eigenvalues of Q simultaneously maximizes the 
genetic progress of all the transformed index traits. To obtain the 
solution a in the original sample space, it suffices to perform the 
inverse transformation of U on au, i.e., a = U'.au. Note that the 
solution can be found among all possible permutations of the 
signs associated with au i. Phenotypic weights are, as before, 
obtained via Eq. (3). 

It is well known that eigenvalues derived from sample esti- 
mates of variance-covariance matrices are biased (Dey and Srini- 
vasan 1985; James 1985); the largest ones are biased high and the 
smallest ones are biased toward values that are too low. Fried- 
man (1989) recommends regularization and shrinkage of the 
sample covariance matrices as a way to mitigate this problem. 
Although intuitively appealing, these measures depend on the 
selected loss function and, thus, ultimately on a subjective de- 
gree-of-belief that is extraneous to this exposition. 



Some examples 

The illustrations that follow relate to selection problems 
in tree improvement programs. Assignment of "econom- 
ic" weights are notoriously difficult in tree breeding, 
where long rotations and ever-changing market and 
technological conditions make predictions of future eco- 
nomic values next to impossible (Bridgwater et al. 1983; 
King et at. 1988; Wilkens 1987; Namkoong et al. 1969; 
Namkoong 1976; van Buijtenen 1969). In addition to the 
optimum solution via the eigenvalues of Q and the back- 
transformation U', a direct search for the optimum simul- 
taneous solution was also implemented in each of the 
given examples; in no case did the grid-search find a 
solution with a higher combined response. The sign per- 
mutations of the "economic" weights (a) were, in each 
case, chosen in order to achieve 'best' response (R). 

Example 1 

Breeding for higher volume production, higher wood densi- 
ty, lower heartwood content, and less stem taper in jack 
pine (Pinus banksiana Lamb.) by single-tree selection 
among 54 half-sib families at age 20 (S. Magnussen and 
C. Keith, unpublished results). From the replicated prog- 
eny trial, the following matrices were obtained: 

X . . . .  = {volume, heartwood%, wood density, stem taper} 

= {371.0, 9.6, 374.4, 100.0} 

//24,524.10 --22.14 --95.04 265.51 \ 
| | -22.14 23.07 -15.26 - 2 . 5 9 |  

/3 = ~ --95.04 --15.26 562.00 5.20] 
\ 265.51 --2.59 5.20 52.93/ 

//2,224.00 27.52 -96.00 166.72 \ 
= / 27.52 6.60 -5 .20 -4.92 ) G ~ - 96.00 - 5.20 228.00 4.52 

\ 166.72 -4 .92 4.52 17.16 

/ 677.5188 -2.2351 -33.8060 52.3769\ 
= [ - 2 . 2 3 5 1  2.353t -2.1895 -2.5418 / 

-2.1895 2.1856] ~ -  33.8060 92.8681 
\ 52.3769 -2.5418 2.1856 6.5597/ 

2 = {683.4949, 91.2896, 4.4905, 0.0247794} 

a ={-0.2676,  -4.8019, 0.0053083, 4.1787} 

/~ = {0.009608, -0.2039, 0.04401, 0.023361} 

From these results, the following relative response per 
unit selection intensity (i) was obtained: 

g(i)/X . . . .  " 1 0 0 =  {3.59, --6.58, 1.09, 0.60} 

Note that the decline in heartwood is in agreement 
with the selection objectives. Independent single-trait se- 
lections produced the following expectation of genetic 
response per unit selection intensity: {3.2%, -11.3%, 
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1.9%, 2.3%}. As shown, more gain is possible when se- 
lecting for just a single trait. However, independent 
culling cannot be expected to produce a maximum com- 
bined gain (Cotterill and James 1981; Hazel and Lush 
1942; Turner and Young 1969). 

Example 2 

Selection of individual trees with superior breeding values 
of height growth. Data: height growth from age I to age 
4 (units: cm) in a replicated progeny trial with jack pine 
(see Magnussen and Yeatman 1987 for details). 

X . . . .  ={24.4, 57.9, 115.9, 189.1} 

P 

0 

33.70 29.20 
= 29.20 114.20 

24.70 146.70 
25.70 126.90 

9.60 8.00 
8.00 46.40 
2.40 67.60 
7,60 76.00 

2.8460 
= 2.1152 

-0.1818 
1.6215 

24.70 25.70\ 
146.70 126.90|  
373.60 229.50 ] 
229.50 542.00 / 

2.40 7.60 \ 
67.60 76.00 | 

129.60 126.80 ] 
126.80 140.40 / 

2.1152 -0.1818 1.6215\ 

) 20.8326 32.8652 35.9421 
32.8652 58.8119 60.5255 
35.9421 60.5255 64.2611 

7. = {141.7563, 4.4979, 0.4345, 0.062883} 

h ={0.8539, 2.3116, 1.8859, -2.9672} 

= {0.1924, 0.05945, 0.058995, --0.039329}. 

The expected genetic gain in percent of the phenotypic 
mean values is: 

/~(i)% ={4.57, 4.44, 3.08, 2.10}. 

Index selection for height at age 4 with heights at 
ages 1, 2, and 3 as "floating" traits (included in the index 
but given an "economic" value of zero) resulted in an 
expected 8% genetic gain per unit selection intensity, 
whereas direct selection for height at age 4 promised no 
more than 3.2% improvement per unit selection intensi- 
ty. It may be argued that simultaneous maximum im- 
provement of all heights is more attractive than merely 
trying to improve the oldest height. After all, rapid early 
growth is in itself economically important (less tending 
costs). Simultaneous improvement of growth at all ages 
promises to shift the growth curve towards an ideotype 
(Tallis 1968) that may be harder to achieve if selection is 
based on trait expression at a single age. 

Example 3 

Selection of individual trees for superior stem thickness 
(dbh) and wood density at age 12 in a replicated progeny 
trial with Douglas fir (Pseudotsuga menziesii (Mirb.) 
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Franco). The phenotypic and additive genetic matrices as 
reported by King et al. (1988) were: 

X . . . .  = {diameter (mm), wood density (kgm-3)} 

={86.3, 363} 

,=( ( 
134.7 639.7//' G = -- --71.0 572.3/1 (10.439-55.8 7) 

(~= -55 .817  535.182/1' ~={541.05, 4.5678} 

a ={+0.4608,  _+0.0917}, ~={+0.1146 ,  _+0.05503}. 

Faced with the strong negative correlation between 
stem thickness and wood density in Douglas fir, two 
solutions to the problem of simultaneously maximizing 
the genetic response are possible. In the first, the expected 
response is: R(i)% = {-0 .25 ,  4.5} which is obtained by 
either of the sign permutations { + ,  + } or { - ,  + } when 
choosing the a-solution. The second solution R ( / ) % =  
{0.25, -4 .5}  is obtained by choosing either of the com- 
plementary sign permutations. King et al. (1988) found 
the desired "economic" weights by direct search among 
numerous weight combinations. The chosen weights 
formed a Minimax solution of a =  {1.00, 0.19} with an 
expected response of R (0% = {2.6, 2.6}. Note the similar- 
ity of the two solutions (4) and the sensitivity of the 
expected response to slight changes in the applied "eco- 
nomic weights". 

Conclusions 

"Economic" end-product values of observable traits are 
quite often difficult to assess accurately in animal and 
plant breeding programs. This is especially true for breed- 
ing that involves long generation intervals and uncertain 
relationships between observable traits and product. 
Forest tree breeding is a prime example hereof. Shifting 
market conditions and technological changes in the in- 
dustry make it hard to predict future economic values 
when trees are selected for breeding. The method of 
simultaneously maximizing the gain in all observed traits 
may, therefore, prove a valuable concept that reflects on 
structural and functional correlations among traits. 
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